DuPont Wafer Level Packaging

Materials Charaterization for Thin Wafer Processing

presented by, Chris Milasincic Global New Business Development Manager HD MicroSystems 2009. July 13th

The miracles of science™

DuPont Wafer Level Packaging High temperature temporary bonding solutions

AGENDA

- DuPont Materials for 3D/TSV
- HDM Polyimide Adhesives for 3D/TSV
- Avoiding Thin Wafer Handling
- DANM Slurries for Backside Grind
- EKC Post Backside Grind Cleaner
- EKC Pre bonding BTA/CuOx Cleaner
- EKC HDM Polyimide Adhesive Remover

DuPont Wafer Level Packaging Materials Characterization for Target Applications

Organic based Adhesives Product Mapping Advantage of PI adhesives

Temporary bonding Polyimide HD3007 Example of end properties

Property/Condition	Units	HD-3007
Liquid Viscosity	St	8-10
Weight Solids	%	25-30
Cure Temp Range	°C	250-350
Bonding Temp Range	C°	300-350
Bonding Press	N/cm ²	>14-22
Contact time	minutes	5-10*
Cured Dielectric Thickness	microns	2-20
Glass Transition Temp (Tg)	°C	188
Weight loss @ 350C	%	0.2
CTE	ppm/ °C	60
Dielectric Constant	Z	3.4
Tensile Strength	Мра	140
Modulus	Gpa	3.6
Thermal Conductivity	W/m*K	0.2

* Bond times dependent on adhesive thicknesses used

•Thicker adhesive layers will bond faster

•Thinner adhesive layers will bond slower

Wafer Bonding HD-3007 – Test Matrix

Test Wafers: Wafer ID: 6715

 Bonding Process: Preheat top chuck to 300 °C Preheat bottom chuck to 180 °C Load bond tool to bond chamber Evacuation on (no wait for certain value) Heat bottom chuck to 300 °C Wait until temperature >= 300 °C Wait 3 min Move separation flags out Wait for 15 s **Piston down** (top chuck starts pressing on glass wafer) (2000 N/min, maximum pressure 6900 N) Wait for 1 min (top chuck stops pressing on glass wafer) Purge N₂ Cooling to 180 °C Unload bond tool from bond chamber

Piston upRequired time for chamber process: 10 min

Result: good, 300°C is working well

Glass wafer	
HD3007	
SI Wafer	

Courtesy of IZM Fraunhofer

Polyimide based permanent bonding adhesives HD7000series Example of end properties

Property/Condition	Units	HD7002	HD-7010
Liquid Viscosity	Pa∙ sec.	2	4
Weight Solids	%	25-40	25-40
Cure Temp Range	°C	250-350	250-400
Bonding Temp Range	°C	250-350	250-350
Bonding Press	N/cm ²	>14-22	>14-22
Contact time	minutes	5-10*	5-10*
Cured Dielectric Thickness	microns	2-20	2-20
Glass Transition Temp (Tg)	°C	172	260
5% Weight loss Temp.	°C	413	395
CTE	ррт	80	70
Dielectric Constant	Z	3.3	3.3
Tensile Strength	Мра	152	173
Modulus	Gpa	2.6	2.6
Elongation	%	100	70
Thermal Conductivity	W/m*K	0.2	0.2

* Bond times dependent on adhesive thicknesses used

•Thicker adhesive layers will bond faster

•Thinner adhesive layers will bond slower

Wafer Bonding HD-7000 Series – Test Matrix

Wafer Bonding with HD7010

Results: Test 18 Wafer ID 7242

 Bonding Process: Preheat top chuck to 250 °C Preheat bottom chuck to 180 °C Load bond tool to bond chamber Evacuation on (no wait for certain value) Wait for 8 min (pre-bake in chamber) Heat bottom chuck to 250 °C (30°C / min) Wait until temperature >= 250 °C Wait 3 min Move separation flags out Wait for 15 s **Piston down** (top chuck starts pressing on glass wafer) (2000 N/min, maximum pressure 6900 N) Wait for 10 min Piston up (top chuck stops pressing on glass wafer) Purge N₂

Cooling bottom chuck to 180 °C Unload bond tool from bond chamber

Result: Succeeded bonding a patterned HD7010 to glass w/o voids

Courtesy of IZM Fraunhofer

Prior Temporary Bonding Scheme

Improved Temporary Polyimide Adhesive Wafer Thinning Process (Eliminates thin wafer handling)

HD-3007 Laser Release Data

Laser lift-off of glass carrier from Si wafer has been carried out at the fluence of 200 and 225 mJ/cm2.

Process Parameters :

- Wavelength : 248 nm (KrF)
- Fluence : 200 and 250 mJ/cm2
- Size of beam spot : 5.0 × 1.3 mm2
- Number of pulse : single pulse
- Machining method : step and repeat with overlap of 100 µm

Glass Wafer Carrier (~400um thick)

HD3007 (4-6um thick)

300mm SI Wafer (~700um thick)

Reference:

- Tamarack successfully performed wafer debonding, including wafer-edge de-activation in AP-278B, they de-bonded the wafers in two steps:
 - 1- Fully ablate the wafer in the X-direction After ablation in the X-direction is complete; rotate the wafer 90 degrees.
 - 2-Fully ablate the wafer in the Y-direction (see diagram below):

Important: Clean glass carrier surface to insure that it does not contain any dirt, spots, etc. that could inhibit the laser light from reaching the adhesive layer.

HD-3007 Laser Release Data

Tamarack Laser De-bonding

Wafer De-bonding Throughput Example:

HD Micro - Throughput and CoO Summary Tamarack Model 414 Excimer Laser De-Bonding System Matthew Gingerella 5/2/2009

(300mm Wafers) Throughput and TCO Estimates

	Tamarack Model 414 with LSX 200K Laser
Beam Size:	1.5mm x 120mm
Machine Capacity (wafers/year)	686,758
Throughput (wafers/hour)	110.00

Process Assumptions:	TCO Assumptions:
LSX 200K Laser (248nm, 670mj)	20 hr/day
200mJ/cm^2,1-Pulse Ablation	6 days/week
Two Passes	52 weeks/yr
1.5mm x 120mm Laser Beam	6-Year Depreciation
Manual Load/Unload	Does not include Laser Gases
	Standard Model 414 De-Bonder

DANM Selective Cu polish Slurry can eliminate additional plating process for bump

Slurry Target Specifications:

- Si Removal rates : 2-2.5 μm/min
- Selectivity Si:Cu: 1:1

Self Cu bumps after polish

Cu and Si RR is tunable.

Current best formulation is Si:Cu of 1:1 @ 16000 A/min using Additive D (need to optimize conc. of D to lower Cu etch rate).

PCMP5510[™] Post Grind/Polish Metallic Contamination Removal

TOF-SIMS Analysis for Residual Copper

Excellent Trace Metal Cleaning Performance

EKC4000[™] BTA/Cu Oxide Cleaner For Cu - Cu Bonding

BTA Removal Summary

EKC4000[™] BTA/Cu Oxide Cleaner For Cu - Cu Bonding

Oxide Removal Summary

EKC865™ Selective Adhesive Remover

EKC865[™] Selective Adhesive Remover for HD3007

Test Wafer Process Conditions

- HD3007 thickness = 8um (4um standard thickness)
- Cured at 200-240°C
- De-bonded via laser ablation
- Additional pieces of silicon wafer coated with HD4100 (blanket and patterned) and cured at 350°C were also tested for compatibility

Cleaning Results

- Rapid Cleaning at 60C for a time of 60-180 secs
- Compatible with HD4001 cured at 350°C
 - Tested at 60°C for 30min with no attack to HD4001
- Excellent Compatibility to Sensitive Metal Films
 - Aluminum, Copper, Titanium, Nickel, Chrome, Tungsten, & other Metal Alloys
- Chemistry can be re-circulated in a closed loop system
- Water rinseable
- Can be utilized in both automated and manual wet cleaning equipment platforms

Thanks for your attention !!

